martes, 3 de junio de 2014

DISTRIBUCION DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos, cada uno de los sucesos es el rango de valores de la variable aleatoria.
La distribución de probabilidad está completamente especificada por la función de distribución, cuyo valor en cada x real es la probabilidad de que la variable aleatoria sea menor o igual que x.



Dada una variable aleatoria \scriptstyle X, su función de distribución\scriptstyle F_X(x), es
F_X(x) = \mathrm{Prob}( X \le x ) = \mu_P\{\omega\in \Omega|X(\omega)\le x\}
Por simplicidad, cuando no hay lugar a confusión, suele omitirse el subíndice \scriptstyle X y se escribe, simplemente, \scriptstyle F(x). Donde en la fórmula anterior:
\mathrm{Prob}\,, es la probabilidad definida sobre un espacio de probabilidad y una medida unitaria sobre el espacio muestral.
\mu_P\, es la medida sobre la σ-álgebra de conjuntos asociada al espacio de probabilidad.
\Omega\, es el espacio muestral, o conjunto de todos los posibles sucesos aleatorios, sobre el que se define el espacio de probabilidad en cuestión.
X:\Omega\to \R es la variable aleatoria en cuestión, es decir, una función definida sobre el espacio muestral a los números reales.

Propiedades

Como consecuencia casi inmediata de la definición, la función de distribución:
Además, cumple
\lim_{x \to -\infty} F(x) = 0
y
\lim_{x \to +\infty} F(x) = 1
Para dos números reales cualesquiera a y b tal que (a < b), los sucesos ( X \le a ) y ( a < X \le b ) son mutuamente excluyentes y su unión es el suceso ( X \le b ), por lo que tenemos entonces que:
P( X \le b ) = P( X \le a ) + P( a < X \le b )
P( a < X \le b ) = P( X \le b ) - P( X \le a )
y finalmente
P(a < X \le b ) = F(b) - F(a)
Por lo tanto una vez conocida la función de distribución F(x) para todos los valores de la variable aleatoria x conoceremos completamente la distribución de probabilidad de la variable.
Para realizar cálculos es más cómodo conocer la distribución de probabilidad, y sin embargo para ver una representación gráfica de la probabilidad es más práctico el uso de la función de densidad.


1 comentario:

  1. Casino, Hotels & Casinos Near Chicago, IL - MapYRO
    Find your way around the 보령 출장샵 casino, find where everything is located with 평택 출장샵 MapYRO's 의정부 출장안마 interactive interactive 논산 출장샵 real-time real-time graphics and visual Gila River Casinos and Casinos · 나주 출장샵 Grand Falls Casino

    ResponderEliminar